
Lenovo
Educational
Board
Intermediate
Manual

Contents

Components Schematic .. 4

Lesson I – 1: Turn On The Nightlight ... 5

OVERVIEW ... 5

Teacher Guide ... 6

Background Info .. 7

Procedure .. 7

Result .. 10

Lesson I – 2: Clap On, Clap Off ... 11

OVERVIEW ... 11

Teacher Guide ... 12

Background Info .. 13

Procedure .. 13

Result .. 15

Lesson I – 3: Control LEDs With Wifi .. 16

OVERVIEW ... 16

Teacher Guide ... 17

Background Info .. 18

Procedure .. 19

Result .. 23

Lesson I – 4: Can You Feel the Heat? ... 25

OVERVIEW ... 25

Teacher Guide ... 26

Background Info .. 27

Procedure .. 27

Result .. 30

Lesson I – 5: Morse Code ..31

OVERVIEW ... 31

Teacher Guide ... 32

Background Info .. 33

Procedure .. 35

Result .. 41

Lesson I – 6: Proximity Sensor ... 43

OVERVIEW ... 43

Teacher Guide ... 44

Background Info .. 45

Procedure .. 45

Result .. 48

Lesson I – 7: Mini Sound Board ... 49

OVERVIEW ... 49

Teacher Guide ... 50

Background Info .. 51

Procedure .. 51

Result .. 54

Lesson I – 8: Motion Detector ... 55

OVERVIEW ... 55

Teacher Guide ... 56

Background Info .. 57

Procedure .. 57

Result .. 59

Lesson I – 9: Guess the Number ... 61

OVERVIEW ... 61

Teacher Guide ... 62

Background Info .. 63

Procedure .. 63

Result .. 66

Lesson I – 10: Create Your Own Timer... 67

OVERVIEW ... 67

Teacher Guide ... 68

Background Info .. 69

Procedure .. 69

Result .. 73

Components Schematic

Reference ID Component Function

B1 Button 1 Input button

B2 Button 2 Input button

B3 Button 3 Input button

B4 Button 4 Input button

B5 Button 5 Reset

IO10 LED 1 Green LED Output

IO11 LED 2 Yellow LED Output

IO12 LED 3 Orange LED Output

IO13 LED 4 Blue LED Output

IO14 Microphone Audio Input/Output

IO15 Buzzer Audio Output

IO45 Neopixel LED Output

J1 Port 1 USB port

L1 Inductor

U1

U2 CPU

U3 Accelerometer

U4 Gesture Sensor

U5 Temperature Sensor

U6

U7 Neopixel

Lesson I – 1: Turn On The Nightlight

OVERVIEW

In this lesson we will:

• Combine the use of a light sensor and an LED to create a nightlight

Teacher Guide

In this lesson, the students will be combining their skills that they learned about the Neopixel and the ambient

light sensor to create a night light. Most of the content in this lesson has been previously learned, but we are

combining these sections of code together to create a new use.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

Wouldn’t it be convenient if your night light could automatically turn on

when you turn out the light or off when you turn on the light? With a

light sensor, we can utilize its functionality to automate the switching of

the LED light when there is little to no light present in the room.

Many modern night lights are designed to turn on automatically when it

gets dark and turn off automatically when it is light again. They use a detector called a CDs cell. A CDs cell is a

type of resistor called a photoresistor. Resistors reduce the flow of electricity. Photoresistors differ from other

resistors in that they change when light shines on them. When light shines on a CDs cell, it decreases the

resistance. The night light has a detector circuit which automatically turns on the light when the resistance

reaches a certain level. High resistance means that there is no light shining on the CDs cell, so the night light

turns on.

Procedure

Since the Lenovo Educational board is equipped with a light sensor and a Neopixel LED, we will take advantage

of these components to create our own night light!

1. Create a blank sketch and save it as “Turn on the Nightlight.”

2. Include the following libraries and variables as well as create the following objects:

// include the following libraries

#include <Wire.h>

#include <SparkFun_APDS9960.h>

#include <Adafruit_NeoPixel.h>

#define NEOPIXEL_PIN 45 // Neopixel is on pin 45

#define NEOPIXEL_COUNT 1 // There is only 1 RGB LED on DOS

#define NEOPIXEL_INDEX 0 // RGB LED is at index 0

#define DELAYVAL 500 // Time (in milliseconds) to pause between pixels

uint16_t ambient_light = 0;

// Create objects

Adafruit_NeoPixel Pixel(NEOPIXEL_COUNT, NEOPIXEL_PIN, NEO_GRB + NEO_KHZ800);

SparkFun_APDS9960 apds = SparkFun_APDS9960();

3. Input the following setup() function to initialize Neopixel and APDS:

4. Input the following loop() function find ambient light values and set the appropriate brightness for the

Neopixel:

void setup() {

 // Initialize Serial port

 Serial.begin(9600);

 Serial.println();

 // Initialize APDS

 apds.init();

 apds.enableLightSensor(false);

 // Wait for initialization and calibration to finish

 delay(500);

 // Initialize Neopixel

 Pixel.begin();

 // Set all pixel colors to OFF

 Pixel.clear();

 Pixel.show();

}

void loop() {

 // Read the light levels (ambient)

 apds.readAmbientLight(ambient_light);

 // if statements to turn Neopixel brightness

 // based on ambient light values

 if (ambient_light < 15)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 255, 255, 255);

 Pixel.show();

 }

 else if (ambient_light >= 15 && ambient_light < 30)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 250, 250, 250);

 Pixel.show();

 }

 else if (ambient_light >= 30 && ambient_light < 50)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 245, 245, 245);

 Pixel.show();

 }

 else if (ambient_light >= 50 && ambient_light < 75)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 235, 235, 235);

 Pixel.show();

 }

 else if (ambient_light >= 75 && ambient_light < 100)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 220, 220, 220);

 Pixel.show();

 }

 else if (ambient_light >= 100 && ambient_light < 200)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 190, 190, 190);

 Pixel.show();

 }

 else if (ambient_light >= 200 && ambient_light < 1000)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 100, 100, 100);

 Pixel.show();

 }

 else if (ambient_light >= 1000 && ambient_light < 3000)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 50, 50, 50);

 Pixel.show();

 }

 else if (ambient_light >= 3000 && ambient_light < 5000)

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 25, 25, 25);

 Pixel.show();

 }

 else

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 0, 0, 0);

 Pixel.show();

 }

}

Result

You have just created an automatic nightlight! Try testing it by covering the gesture sensor with your hand.

Now It’s Your Turn!

• Can you program the nightlight so you can turn it on/off with a button?

• Can you program the nightlight so that it lights up different LEDs according to brightness?

Lesson I – 2: Clap On, Clap Off

OVERVIEW

In this lesson we will:

• Write a simple program to use clapping noise to turn on and off a LED

Teacher Guide

In this lesson, students will interact with the microphone and a LED to create a device that resembles a smart

lightbulb. One of the difficult things for this lesson will be getting the claps to register. For us, a micVal of 30

gave the best results, but this value can be adjusted lower (i.e., 20 or 25 to register quieter claps). Additionally,

between claps when turning off the LED make sure that there is a half second pause. Meanwhile, after turning

off the LED, make sure students wait at least a second before trying to turn it back on again. Finally, if you use

sounds other than claps, it may not register turning on and off the LED correctly.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

Many modern homes are equipped with automatic gadgets to provide

a better living experience for those who live there. You have probably

heard of an automatic light that turns on/off when you make a clapping

noise. One clap would turn on the light and two claps would turn off

the lights.

This works because the smart light is equipped with a sound sensor.

The sound sensor is programmed to switch on/off the light when a

clapping noise is made. The sound detector will act as a switch to

control the light. In this lesson, we will teach you how to use the noise

detector with the Lenovo Educational board to create your own automatic clapping light.

Procedure

1. Create a new sketch and input the following variables and constants above the setup() function:

2. Input the following setup() function to set the pinMode:

const int BlueledPin = 13; // blue LED pin

const int micPin = 14; // microphone pin number

int micVal = 0; // value read from the microphone

bool litUp = false; // tells whether the LED is on/off

void setup() {

 // sets pinmode for LED

 pinMode(BlueledPin, OUTPUT);

}

3. Input the following loop() function to read values from the microphone to register a clap:

We set the clap to register at a value greater than 30 which should be adequate, but feel free to adjust this

to what works best. Also, note that to register claps to turn off the LED, we wait half a second before

detecting the second clap. After turning the LED off, we wait a second before reading the values to turn

the LED back on again.

void loop() {

 // read the current microphone value

 micVal = analogRead(micPin);

 // micVal of 30 registers a clap

 if (micVal > 30 && !litUp) // turn LED on with one clap

 {

 digitalWrite(BlueledPin, HIGH);

 litUp = true;

 }

 else if (micVal > 30 && litUp) // turn LED off with two claps

 {

 delay(500); // wait half a second between claps to turn off

 micVal = analogRead(micPin);

 if (micVal > 30)

 {

 digitalWrite(BlueledPin, LOW);

 litUp = false;

 delay(1000); // wait a second before being able to turn the light on again

 }

 }

}

Note: For Rev 2 of the Lenovo Educational

Board, your microphone may misread values

leading to the LED not turning on when

expected

Result

You have created a smart lightbulb that turns on when you clap once and turns off if you clap twice.

Now It’s Your Turn!

• Can you make the LED light up to louder sounds like an alarm?

• If you hear a clap, can you play sounds on the buzzer like music? And turn it off as well?

Lesson I – 3: Control LEDs With Wifi

OVERVIEW

In this lesson we will:

• Learn how WIFI networks work with Arduino

• Write a program to activate LEDs with buttons on a webpage

Teacher Guide

In this lesson, students will interact with Wi-Fi to turn the LEDs on their board on and off. Before this lesson,

we recommend making sure that you know the Wi-Fi network name and password for the students to connect

to.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

Wi-Fi for Arduino

There are many options to connect your Arduino board to a WIFI network, but your Educational board is

equipped with an ESP32-WROOM-32D processor so no additional equipment needed. ESP32 is a series of low-

cost, low-power system on a chip microcontrollers with integrated Wi-Fi. By connecting your Arduino board to

a WIFI network, you will be able to remotely control the yellow, blue, and green LEDs on your board anywhere

in the house! Keep in mind that your device and the board has to be in the same network to control the lights.

What is HTML?

Throughout the lessons that you have completed so far, we have used a programming language called C or

C++ to interact with the Arduino IDE. However, in

this lesson, we will begin to use the Lenovo

Educational Board across the Internet. In order to

create documents that are to be displayed in a

web browser from an IP address, we will use HTML

(Hypertext Markup Language). This programming

language is used to achieve font, graphic, color,

and hyperlink effects on a web browser. For this

lesson, we will begin using HTML (which will be

used more in advanced lessons). We will explain

the basics of HTML below, but if you want to learn more please visit the following link:

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

Now, that you have some context on what

HTML is, what does it look like? HTML is

divided into sections of elements that have an

opening and closing tag for every element.

Some common opening tags are <h> for

heading and <p> for paragraph. Additionally,

HTML commonly uses hexadecimal to display

color values. This is a quick and easy way to

store larger values.

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

Procedure

In this tutorial, we will move on to something a little bit more advanced! We will write a sketch to control the

LEDs over a webpage on your phone or any mobile device.

This sketch runs a web server on the board and serves up HTML to the browser on the client side to allow the

user to control the yellow, blue, and green LEDs over the web. As mentioned before, the laptop/smartphone

needs to be on the same WIFI network as the Lenovo Educational Board for this to work.

1. In a blank sketch, include the WiFi.h, WebServer.h, and Preferences.h libraries and define the LED pins

with the following lines:

2. Input the following variables:

4. Next, we will create a web server instance on port 80 with the following line:

// include the following libraries

#include <WiFi.h>

#include <WebServer.h>

#include <Preferences.h>

// LED Pins

#define LED_YELLOW 11

#define LED_GREEN 10

#define LED_BLUE 13

// WiFi credentials

String ssid = "";

String password = "";

// Create a web server instance on port 80.

WebServer server(80);

Preferences preferences;

** Port 80 is the port number assigned to commonly used internet

communication protocol, Hypertext Transfer Protocol (HTTP). It is the port

from which a computer sends and receives Web client-based communication

and messages from a Web server and is used to send and receive HTML

pages or data

5. Now, we create a function called sendResponse() to generate the HTML content based on the state of

the pins and return that to the client.

void sendResponse()

{

 String htmltext = "<!DOCTYPE html><html>\

 <head><meta name=\"viewport\" content=\"width=device-width,

initial-scale=1\">\

 <link rel=\"icon\" href=\"data:,\">\

 <style>html { font-family: Helvetica; display: inline-block;

margin: 0px auto; text-align: center;}\

 .button { background-color: #E7E7E7; border: none; color: white;

padding: 16px 40px;\

 text-decoration: none; font-size: 30px; margin: 2px; cursor:

pointer;}\

 .button_y {background-color: #FFFF00;}\

 .button_g {background-color: #4CAF50;}\

 .button_b {background-color: #008CBA;}</style></head>\

 <body><h1>LENOVO GTC Dos</h1>\

 <h2>LEDs</h2>";

 // Determine state of Yellow LED.

 if (digitalRead(LED_YELLOW) == HIGH)

 {

 // LED is ON. Provide visual indication and set href to enable turning off.

htmltext += "<button class=\"button button_y\">Y</button>";

 }

 else

 {

 // LED is OFF. Provide visual indication and set href to enable turning on.

htmltext += "<button class=\"button\">Y</button>";

 }

 // Determine state of Green LED.

 if (digitalRead(LED_GREEN) == HIGH)

 {

 // LED is ON. Provide visual indication and set href to enable turning off.

htmltext += "<button class=\"button button_g\">G</button>";

 }

 else

 {

 // LED is OFF. Provide visual indication and set href to enable turning on.

htmltext += "<button class=\"button\">G</button>";

 }

 // Determine state of Blue LED.

 if (digitalRead(LED_BLUE) == HIGH)

 {

 // LED is ON. Provide visual indication and set href to enable turning off.

 htmltext += "<button class=\"button button_b\">B</button>";

 }

 else

 {

 // LED is OFF. Provide visual indication and set href to enable turning on.

htmltext += "<button class=\"button\">B</button>";

 }

 htmltext += "</body></html>";

 // Return the response to the client.

 server.send(200, "text/html", htmltext);

}

6. The next function we will create is the handler for root endpoint, which is the landing page.

7. Now, we create functions to turn each LED on/off.

8. Repeat step 7 above and create 2 functions to turn on/off the Green and Blue LED.

9. Input the getWifi() function to read WiFi information from the EEPROM:

void handleRoot()

{

 // Call helper function that builds the HTML content

 // and sends it back to the client.

 sendResponse();

}

void handleYellowLed_Off()

{

 // Turn the Yellow LED off.

 digitalWrite(LED_YELLOW, LOW);

 // Send HTTP response.

 sendResponse();

}

// Handler to turn Yellow LED On.

void handleYellowLed_On()

{

 // Turn the Yellow LED on.

 digitalWrite(LED_YELLOW, HIGH);

 // Send HTTP response.

 sendResponse();

}

// get Wifi info

void getWifi()

{

 preferences.begin("credentials", false);

 ssid = preferences.getString("ssid", "");

 password = preferences.getString("password", "");

 if (ssid == "" || password == ""){

 Serial.println("No ssid or password saved.");

 }

 else {

 Serial.println("Successfully read WiFi information.");

 }

}

10. Input the following setup() function:

11. Input the following loop() function:

void setup() {

 // set the baud rate on Serial port

 Serial.begin(115200);

 Serial.println("HPE GTC Dos says Hello!");

 getWifi();

 // Initialize LED pins

 pinMode(LED_YELLOW, OUTPUT);

 pinMode(LED_GREEN, OUTPUT);

 pinMode(LED_BLUE, OUTPUT);

 digitalWrite(LED_YELLOW, LOW);

 digitalWrite(LED_GREEN, LOW);

 digitalWrite(LED_BLUE, LOW);

 // Establish WiFi connection

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected.");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

 Serial.println("");

 // Initialize and start server

 server.on("/", handleRoot);

 server.on("/Y/0", handleYellowLed_Off);

 server.on("/Y/1", handleYellowLed_On);

 server.on("/G/0", handleGreenLed_Off);

 server.on("/G/1", handleGreenLed_On);

 server.on("/B/0", handleBlueLed_Off);

 server.on("/B/1", handleBlueLed_On);

 server.begin();

 Serial.println("Web server is now running.");

 Serial.println("Type in the IP address above to connect.");

}

void loop() {

 // Start accepting and processing client connections

 server.handleClient();

}

Result

After you have created all the additional functions and filled out the setup() and loop() functions, it’s time to

execute the program!

1. Connect your board to your computer

2. Set your COM port and open the Serial Monitor

3. Compile and upload your sketch on to your board

You should get the following output from your Serial Monitor

4. Copy the IP address from the output and go to it on a web browser of your choice

The web page should look like the following image:

An Internet Protocol address (IP

address) is a numerical label assigned

to each device connected to a

computer network that uses the

Internet Protocol for communication.

5. Click on the Y to light up the Yellow LED, the G button to light up the Green LED, and the B button to

light up the Blue LED

6. Click on the buttons again to turn of the LEDs

Now It’s Your Turn!

• Can you turn on the Neopixel or the Buzzer using WiFi connections?

Lesson I – 4: Can You Feel the Heat?

OVERVIEW

In this lesson we will:

• Utilize both the temperature sensor and Neopixel to display temperature

• Write a simple program that lights up the Neopixel according to the temperature

Teacher Guide

In this lesson, students will be interacting with the Neopixel and the temperature sensor. If the students have

already completed the Neopixel and temperature sensor lessons, then this should come quite easy as most of

the code is similar.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

Naturally, we associate the color red as hot

and the color blue as cold. Think of a mood

ring or anything similar; the reason that they

change colors is because of the temperature

and not actually your emotions. A mood ring is

a ring that contains a thermochromic element,

such as liquid crystal, that changes colors

based upon the temperature of the finger of

the wearer. Another product you might know

that changes colors when the temperature changes is color changing nail polish. Color changing nail polish

works that same way as the mood ring. An elevation in body temperature, for example: running your hands

under warm/hot water, or going outside in hot weather will cause the nail polish color to change.

So what if we create a program that can change the color of the Neopixel LED on the Arduino board according

to what the current temperature is? In order to achieve this, we would need to interact with two devices on

our board, the Temperature Sensor and the Neopixel LED.

Procedure

Do you still remember how to change the color on the Neopixel or get the current temperature in Fahrenheit

from the temperature sensor? If you do, stop reading this and try it on your own first! If you don’t, that’s okay,

we will walk you through it.

1. First, include the required libraries:

2. Create and define variables and pins:

#include <Wire.h> // I2C library

#include "ens210.h" // ENS210 library

#include <Adafruit_NeoPixel.h> // Neopixel library

#define NEOPIXEL_PIN 45 // Neopixel is on pin 45

#define NEOPIXEL_COUNT 1 // There is only 1 RGB LED on Dos.

#define NEOPIXEL_INDEX 0 // RGB LED is at index 0.

#define DELAYVAL 500 // Time (in milliseconds) to pause between pixels

float CurTemp; // store current temperature

3. Create Adafruit_NeoPixel and ENS210 objects:

4. Input the following setup() function to initialize the Neopixel and Temperature sensor:

5. Input the following inside the loop() function to read the temperature values:

Adafruit_NeoPixel Pixel(NEOPIXEL_COUNT, NEOPIXEL_PIN, NEO_GRB + NEO_KHZ800);

ENS210 ens210;

void setup() {

 // set the baud rate on the serial port

 Serial.begin(115200);

 // initialize the Neopixel object

 Pixel.begin();

 // set all pixel colors to OFF

 Pixel.clear();

 Pixel.show();

 // initialize I2C

 Wire.begin();

 // Enable ENS210

 ens210.begin();

}

void loop() {

 // resets Neopixel color

 Pixel.setPixelColor(NEOPIXEL_INDEX, 0, 0, 0);

 // reads temperature data to CurTemp variable

 int t_data, t_status, h_data, h_status;

 ens210.measure(&t_data, &t_status, &h_data, &h_status);

 CurTemp = ens210.toFahrenheit(t_data, 10) / 10.0;

 Serial.print("Temp: ");

 Serial.print(CurTemp);

 Serial.print(" F");

 Serial.println();

6. Inside the loop() function add the temperature thresholds to change the Neopixel color:

 // temperatures are associated with a color

 if (CurTemp <= 35.0) // set to blue

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 0, 0, 255);

 }

 else if (CurTemp > 35.0 && CurTemp <= 50.0) // set to light blue

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 30, 30, 255);

 }

 else if (CurTemp > 50.0 && CurTemp <= 60.0) // set to green

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 0, 255, 0);

 }

 else if (CurTemp > 60.0 && CurTemp <= 70.0) // set to yellow

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 255, 255, 0);

 }

 else if (CurTemp > 70.0 && CurTemp <= 80.0) // set to orange

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 140, 30, 0);

 }

 else if (CurTemp > 80.0 && CurTemp <= 90.0) // set to red

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 255, 15, 10);

 }

 else if (CurTemp > 90.0 && CurTemp <= 100.0) // set to pink red

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 255, 50, 50);

 }

 else if (CurTemp > 100.0) // set to white

 {

 Pixel.setPixelColor(NEOPIXEL_INDEX, 255, 255, 255);

 }

 // push the color to the neopixel

 Pixel.show();

 // waits 5 seconds

 delay(5000);

}

Result

After you have completed the procedure, now you should be able to upload the program onto the board.

Opening the serial monitor is optional if you want to know the exact temperature, as well as to check if the

Neopixel displays the correct color according to the temperature.

Another tip for testing the program is to blow hot air or put your hand over the temperature sensor to

increase the temperature. Then check to see if the color on the Neopixel changes or not.

Now It’s Your Turn!

• Can you display the temperature value to an OLED display and change the LEDs based on the humidity?

Lesson I – 5: Morse Code

OVERVIEW

In this lesson we will:

• Learn how Morse code works

• Take a string and output Morse code to an LED

• Input Morse code through the buttons and convert it into strings to display on the Serial Monitor

Teacher Guide

In this lesson, students will interact with morse code. This exercise is long but will be rewarding once the

students finish. Before starting this lesson, we recommend looking at the morse code alphabet and learning

“SOS” as this is a very easy and common morse code signal. Additionally, students will input their values via a

button to the Serial to create letters and once a certain button is pressed, display to a LED.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

Morse code is a character encoding scheme used

in telecommunication that encodes text characters as

standardized sequences of two different signal durations called dots and dashes or dits and dahs. Morse code

is named for Samuel F. B. Morse, an inventor of the telegraph.

The International Morse Code encodes the 26 English letters A through Z, some non-English letters, the Arabic

numerals and a small set of punctuation and procedural signals (prosigns). There is no distinction between

upper and lower-case letters.

Each Morse code symbol is formed by a sequence of dots and dashes. The dot duration is the basic unit of

time measurement in Morse code transmission. The duration of a dash is three times the duration of a dot.

Each dot or dash within a character is followed by period of signal absence, called a space, equal to the dot

duration. The letters of a word are separated by a space of duration equal to three dots, and the words are

separated by a space equal to seven dots. To increase the efficiency of encoding, Morse code was designed so

that the length of each symbol is approximately inverse to the frequency of occurrence in text of the English

language character that it represents. Thus the most common letter in English, the letter "E", has the shortest

code: a single dot. Because the Morse code elements are specified by proportion rather than specific time

durations, the code is usually transmitted at the highest rate that the receiver is capable of decoding. The

Morse code transmission rate (speed) is specified in groups per minute, commonly referred to as words per

minute.

Morse code is usually transmitted by on-off keying of an information carrying medium such as electric current,

radio waves, visible light or sound waves. The current or wave is present during time period of the dot or dash

and absent during the time between dots and dashes.

Morse code can be memorized, and Morse code signaling in a form perceptible to the human senses, such as

sound waves or visible light, can be directly interpreted by persons trained in the skill.

Because many non-English natural languages use other than the 26 Roman letters, Morse alphabets have been

developed for those languages.

In an emergency, Morse code can be generated by improvised methods such as turning a light on and off,

tapping on an object or sounding a horn or whistle, making it one of the simplest and most versatile methods

of telecommunication. The most common distress signal is SOS – three dots, three dashes, and three dots –

internationally recognized by treaty.

SOS, the standard emergency signal, is a

Morse code prosign.

https://en.wikipedia.org/wiki/File:SOS.svg

Procedure

1. First, define some helpful variables for later:

The PIN_OUT is, in the case of our board, the green LED. The UNIT_LENGTH is a universal measurement in

our code that is set to 250 milliseconds. A dit or “.” is 1 unit length, a dah or “–” is 3 unit lengths, and a gap

or “ ” is 1 unit length. Spaces between different words will end up being 7 units, as written in a comment

of the next step’s code sample. Additionally, we define the pins for the two buttons that we will use along

with a few other global variables to help with translation.

2. Now we build a struct and fill it with a map of alphanumeric characters and punctuation to their morse

code equivalent:

Proceed to next page to continue step 2…

// define the LED pin

#define PIN_OUT 10

// define the unit length in ms

#define UNIT_LENGTH 250

// define the button pin to input morse code

#define BUTTON 1

// define the button pin to read morse code

const int buttonTwo = 2;

// determines whether to output to the LED

bool complete = false;

// message in letters

String finalMsg = "";

// used for translation to and from morse code

static String codex = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890 .,?!:;()@&";

// array where the translations to morse code are stored

static String dots_and_dashes[] = {

 ".-",

 "-...",

 "-.-.",

 "-..",

 ".",

 "..-.",

 "--.",

 "....",

 "..",

 ".---",

 "-.-",

 ".-..",

 "--",

 "-.",

 "---",

 ".--.",

 "--.-",

 ".-.",

 "...",

 "-",

The word static means there is only one of this structure

The brackets [] after MorseMap show that this is an array, where each pairing can be accessed by its index

(where the 0 is the first element and 1 is the second element and so on).

3. Input the following setup() function:

Our setup method is pretty simple. We are just resetting all of the green and orange LEDs to make sure

they are initially turned off and setting the buttons to INPUT.

 "..-",

 "...-",

 ".--",

 "-..-",

 "-.--",

 "--..",

 ".----",

 "..---",

 "...--",

 "....-",

 ".....",

 "-....",

 "--...",

 "---..",

 "----.",

 "-----",

 " ",

 ".-.-.-",

 "--..--",

 "..--..",

 "-.-...",

 "---...",

 "-.-.-.",

 "-.--.",

 "-.--.-",

 ".--.-.",

 ".-...",

};

void setup() {

 // set the appropriate LEDs and buttons

 Serial.begin(115200);

 pinMode(BUTTON, INPUT);

 pinMode(buttonTwo, INPUT);

 pinMode(PIN_OUT, OUTPUT);

 digitalWrite(PIN_OUT, LOW);

 pinMode(12, OUTPUT);

 digitalWrite(12, LOW);

}

4. Input the following loop() function:

First, the complete Boolean is reset each loop and we read whether the button to output to the LED is

pushed and change the Boolean accordingly. If the Boolean is true, we run the if statement which is

explained below.

void loop() {

 if (complete) // outputs the morse code to LED

 {

 complete = false;

 String morseWord = encode(finalMsg);

 for(int i = 0; i <= morseWord.length(); i++)

 {

 switch(morseWord[i])

 {

 case '.': // dit

 digitalWrite(PIN_OUT, HIGH);

 delay(UNIT_LENGTH);

 digitalWrite(PIN_OUT, LOW);

 delay(UNIT_LENGTH);

 break;

 case '-': // dah

 digitalWrite(PIN_OUT, HIGH);

 delay(UNIT_LENGTH * 3);

 digitalWrite(PIN_OUT, LOW);

 delay(UNIT_LENGTH);

 break;

 case ' ': // gap

 delay(UNIT_LENGTH);

 }

 }

 digitalWrite(12, HIGH);

 delay(UNIT_LENGTH);

 digitalWrite(12, LOW);

 delay(UNIT_LENGTH * 3);

 finalMsg = "";

 Serial.println();

 }

 else // takes in morse code from button

 {

 while (digitalRead(buttonTwo) != HIGH)

 {

 String myMsg = GetLetter();

 Translate(myMsg);

 }

 complete = true;

 }

}

The String morseWord is just our desired message encoded in Morse Code. This is done by feeding the

message (in this case it is the variable, finalMsg) to a method called encode, which is written outside of the

loop method. We will detail below how encode works. Please input the encode function below and outside

of the loop function.

Since strings are just arrays of characters, we can for loop through the string and read each character

individually at index i. Then we have a nested for loop inside that checks through the codex variable to find

the character that matches. If it matches, then we add the corresponding code to morseWord from

dots_and_dashes. We add a small space after each character so the LED can briefly refresh before starting

to display the next letter. Finally, once we have found the entire encoding for the input string, we return

morseWord.

Now we will take a closer look at the switch case statements that you already inputted into the loop.

Please note that you do NOT need to type the following information again.

// translates letters to morse code

String encode(String string)

{

 size_t i, j;

 String morseWord = "";

 for(i = 0; string[i]; i++)

 {

 for(j = 0; j < 47; j++)

 {

 if(string[i] == codex[j])

 {

 morseWord += dots_and_dashes[j];

 break;

 }

 }

 morseWord += " "; // Add tailingspace to separate the chars

 }

 return morseWord;

}

switch(morseWord[i])

 {

 case '.': // dit

 digitalWrite(PIN_OUT, HIGH);

 delay(UNIT_LENGTH);

 digitalWrite(PIN_OUT, LOW);

 delay(UNIT_LENGTH);

 break;

 case '-': // dah

 digitalWrite(PIN_OUT, HIGH);

 delay(UNIT_LENGTH * 3);

 digitalWrite(PIN_OUT, LOW);

 delay(UNIT_LENGTH);

 break;

 case ' ': // gap

 delay(UNIT_LENGTH);

 }

Back to the loop method. Once we are given morseWord, we again write a for loop to read all of its

characters in order. Here we utilize switch and case statements, which are an excellent tool for pattern

matching if we want to quickly and cleanly organize code to recognize variations of an input.

In this case, we want to read in a character (this is what’s in the parentheses, switch(morseWord[i]) and

case on it. We only have to account for 3 cases because Morse code only involves 3 types of output: dits,

dahs, and gaps. Case statements need a break; statement afterwards because if that break was not there,

they would continue to read the cases underneath them and run their code as well. For example, if there

were no breaks after the first two cases and we read in a dit, the code for dit, dah, and gap would all run!

Once our code determines which case describes the current character at index i in morseWord, it will run

the appropriate code, turning on PIN_OUT when appropriate and for however much time is necessary, in

relation to UNIT_LENGTH.

At the end of each iteration of loop, when our message has fully been relayed, we briefly reset the orange

LED to show that the message has been completed and will restart shortly.

Now, we look to the else statement in the loop function. This contains two functions inside of it to get

input from the user using morse code. We will explain these two functions below:

The GetLetter function will return a string of dots and dashes.

// reads input from button to morse code

String GetLetter()

{

 unsigned long START, STOP, TIME;

 String myMsg = "";

 while(true)

 {

 while(digitalRead(BUTTON) == LOW)

 {

 // do nothing until button is pressed

 }

 digitalWrite(PIN_OUT, HIGH);

 START = millis();

 while(digitalRead(BUTTON) == HIGH)

 {

 // do not register input until button is released

 }

 STOP = millis();

 digitalWrite(PIN_OUT, LOW);

 TIME = STOP - START;

This function will translate the string from the previous function and display it to the serial monitor by

taking input from the user and concatenating a string with dots and dashes based on how long the input

button is pressed and held for.

The function starts by entering a while loop with the “true” condition: this way, we can add multiple dots

or dashes without having to use more logic in the “loop()“ function. The two empty, while loops within

this function are used to calculate the amount of time that passes between pressing and releasing the

button. The first loop will not end until the button is pressed, and the second loop will not end until the

button is released.

The millis() function returns the amount of time that has passed since the current program began. By

calling this function when the button is pressed, and then once more when it is released, then we can

determine how long the button is held for. We also turn on an LED while the button is pressed down.

We now continue to input code into the GetLetter() function where we left off.

If the button was only pressed down for a fraction of a second (less than 25ms), it is more likely to have

been the switch bouncing, so we will invalidate that press. Otherwise, we will take that input and add

either a dot or a dash to our string. If 0.750 seconds go by without another button press, then whatever is

stored in that string will be sent to the translator (i.e. it marks the end of a letter).

Next, we explore the Dot_or_Dash() function which was used inside of the GetLetter() function.

 if (TIME > 25)

 {

 myMsg += Dot_or_Dash(TIME);

 }

 while((millis() - STOP) < 750)

 {

 delay(10);

 if (digitalRead(BUTTON) == HIGH)

 {

 break;

 }

 }

 if ((millis() - STOP) >= 750)

 {

 return myMsg;

 }

 }

}

If the button press was less than 0.500 seconds, then it is a dot. Otherwise, the press is a dash. Feel free to

customize this to your own liking.

Now, we will input the translate function which converts morse code to letters.

The above code takes the string produced by GetLetter() and runs through our codex to see if that string

matches any of our predefined strings. If it does, then it prints that letter to the serial monitor. If it

doesn’t, then we print an Error.

Finally, we have reached the end of our loop function which has a 1.5 second delay. This requires waiting

1.5 seconds between inputting characters in morse code into the button. Additionally, to output your

string to morse code using the LEDs, as soon as the letter displays on the screen hold button2 for 2

seconds. This delay can be changed according to preference.

// determine if it is a dot or dash

char Dot_or_Dash (unsigned long TIME)

{

 char DoD;

 if (TIME < 500)

 {

 DoD = '.';

 }

 else

 {

 DoD = '-';

 }

 return DoD;

}

// translates morse code to letters

void Translate (String myMsg)

{

 for (int i = 0; i < 47; i++)

 {

 if (myMsg == dots_and_dashes[i])

 {

 Serial.print(codex[i]);

 finalMsg += codex[i];

 return ;

 }

 }

 Serial.print("ERROR, I cannot understand you!\n");

 return ;

}

Result

You have now learned about how Morse code works and how to output it on your Arduino board! You have

also learned about switch and case statements and how arrays work.

Now It’s Your Turn!

• Can you make the input message read from typing in the Serial Monitor?

• Can you light up the Neopixel instead of a LED for Morse code?

• Can you add a break for words? Will it be a certain string of characters or will it be after a certain

amount of time has passed?

• Can you send a message with your encoder via email?

Lesson I – 6: Proximity Sensor

OVERVIEW

In this lesson we will:

• Utilize proximity sensor and buzzer to act like a car’s back up camera

Teacher Guide

In this lesson, the students will be interacting with the buzzer and gesture sensor to detect distance from the

board. The motion sensor starts to pick up an object about 18 inches away from the sensor and reads until an

object is about 2 inches away. Please note, that even when the program is running and no object is detected,

the buzzer will still sound which may get annoying.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

What is a proximity sensor you might ask? This device measure how close or far that objects are away from it.

These types of sensors are then

able to do certain actions within a

given distance threshold. For

example, when a car is backing up

and you hear beeps increasing in

frequency as you get closer to an

object to signal how near you are.

Additionally, many phones use a

proximity sensor when you pick up

a phone call to dim or turn off the

screen if the phone is held up to

your ear. The applications for this

device is endless, but for this lesson we will use the sensor to resemble the back up camera on a car.

Procedure

1. Start by including the following libraries:

2. Create a SparkFun_APDS9960 object.

3. Include the following constants and global variables:

// include the following libraries

#include <Wire.h>

#include <SparkFun_APDS9960.h>

// object creation

SparkFun_APDS9960 apds = SparkFun_APDS9960();

uint8_t proximity_data = 0; // proximity value

const float midC = 256.0; // the hz value of middle C

const int piezoPin = 15; // the number of the buzzer pin

4. Input the following setup() function to set the baud rate, set the pinModes, and initialize the gesture

sensor:

5. Input the following loop() function to read the proximity values:

void setup() {

 // Initialize Serial port

 Serial.begin(9600);

 pinMode(piezoPin,OUTPUT);

 // Initialize gesture sensor for proximity

 apds.init();

 apds.enableProximitySensor(false);

 apds.setProximityGain(PGAIN_2X);

}

void loop() {

 // Read the proximity value

 apds.readProximity(proximity_data);

6. Inside of the loop function that you inputted above include:

These are the test cases for distances away from the sensor so when you are within a certain range, the

beeping will have shorter delays as you get closer to the sensor.

 // each test case is in a loop if proximity is within a threshold

 while(proximity_data < 15)

 {

 myTone(piezoPin, midC, 250);

 delay(1100);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 15 && proximity_data < 25)

 {

 myTone(piezoPin, midC, 250);

 delay(900);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 25 && proximity_data < 50)

 {

 myTone(piezoPin, midC, 250);

 delay(700);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 50 && proximity_data < 100)

 {

 myTone(piezoPin, midC, 250);

 delay(500);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 100 && proximity_data < 150)

 {

 myTone(piezoPin, midC, 250);

 delay(300);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 150 && proximity_data < 200)

 {

 myTone(piezoPin, midC, 250);

 delay(200);

 apds.readProximity(proximity_data);

 }

 while(proximity_data >= 200)

 {

 myTone(piezoPin, midC, 250);

 delay(100);

 apds.readProximity(proximity_data);

 }

}

7. Input the myTone method to play the sound from the buzzer:

Result

Now you can hold your hand starting 18 inches away from the sensor the beeping will increase in frequency as

you get closer to the sensor and then slower again as you get further away.

Now It’s Your Turn!

• Can you make the Neopixel turn red if you get within two inches of the sensor?

// plays the tone we want by using the vibrations of the buzzer

void myTone(byte pin, uint16_t frequency, uint16_t duration)

{ // input parameters: Arduino pin number, frequency in Hz, duration in milliseconds

 unsigned long startTime=millis();

 unsigned long halfPeriod= 1000000L/frequency/2;

 while (millis()-startTime< duration)

 {

 digitalWrite(pin,HIGH);

 delayMicroseconds(halfPeriod);

 digitalWrite(pin,LOW);

 delayMicroseconds(halfPeriod);

 }

}

Lesson I – 7: Mini Sound Board

OVERVIEW

In this lesson we will:

• Write a program to convert button inputs into sounds

Teacher Guide

Students will be using buttons on the board to play sounds. Please remind students to be cognizant to others

because playing lots of sounds may become overwhelming or annoying for other students. This lesson uses an

array to store values, but we learned about these during the morse code lesson.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

A soundboard is a computer program, Web application, or device,

traditionally created in Adobe Flash that catalogues and plays many short

soundbites and audio clips. Soundboards are self-contained, requiring no

outside media player. In recent years soundboards have been made available

in the form of mobile apps available on iPhone App Store and Google Play. In

response to Adobe and web browser developers deprecating support for

Flash, HTML5-based soundboards are now gaining popularity in recent years.

Procedure

1. Define some constants that represent the pin numbers of the buzzer, LEDs, and buttons which we’ll be

using.

2. Declare the following arrays:

Here, we’ve declared two more arrays: one to store our chords with the frequencies of each note, and

another to store the LED displays to match up with the chord.

// define button, LED, and buzzer pins

#define BUZZER 15

#define YELLOW 11

#define GREEN 10

#define BLUE 13

#define Button1 1

#define Button2 2

#define Button3 3

#define MODE 4

// create the notes to play

int myChords [][3] = {

 {440, 555, 660}, // A Major

 {523, 660, 784}, // C Major

 {392, 494, 588}, // G Major

};

int myLED[3] = {YELLOW, GREEN, BLUE}; // Yellow = A Major,

// Green = C Major, Blue = G Major

3. Create global variables to store the states of the buttons.

(i.e. pressed or not-pressed)

4. Input the following setup() function:

Here we are just setting up our pins to be inputs or outputs, and we turn on the first LED in our sequence.

5. Input the following loop() function:

The first thing to happen in each loop is to set the notes. Let’s break down that array referencing. If we

keep toggling our Mode, then we can bound it between the values of 0 and 2 by taking the modulus of our

counter with the number 3. Then, we select that nth triad from our array and set the first, second, and

third notes to our local variables.

// button states and modes

int mode_select = 0;

int Button1_State = 0;

int Button2_State = 0;

int Button3_State = 0;

int MODE_State = 0;

void setup(){

 Serial.begin(115200);

 // set the modes for buttons, LEDS, and buzzer

 pinMode(YELLOW, OUTPUT);

 pinMode(GREEN, OUTPUT);

 pinMode(BLUE, OUTPUT);

 pinMode(MODE, INPUT);

 pinMode(Button1, INPUT);

 pinMode(Button2, INPUT);

 pinMode(Button3, INPUT);

 pinMode(BUZZER, OUTPUT);

 // initialize the LED display

 int i = mode_select % 3;

 digitalWrite(myLED[i], HIGH);

}

void loop(){

// determine chord to play based on mode

 int n = mode_select % 3;

 int note1 = myChords[n][0];

 int note2 = myChords[n][1];

 int note3 = myChords[n][2];

 MODE_State = digitalRead(MODE);

6. Set up the following if statement following the code inputted above in the loop() function:

The first statement increments our Mode (we add in a delay so that you have a buffer to lift-up without

registering as another press). We turn off the current LED and then turn on the new LED.

Then, depending on which button is pressed, we play one of the three notes in our triad.

7. Finally, input the myTone method to play the sound from the buzzer below the loop() function.

 // play different notes based off mode selected by button at pin 4

 if (MODE_State) // then change the current LED and the cords stored

 {

 delay(250);

 mode_select++;

 digitalWrite(myLED[n], LOW);

 n = mode_select % 3;

 digitalWrite(myLED[n], HIGH);

 }

 // play different note in cord based on button number

 if (digitalRead(Button1) == HIGH)

 {

 myTone(BUZZER, note1, 250);

 }

 if (digitalRead(Button2) == HIGH)

 {

 myTone(BUZZER, note2, 250);

 }

 if (digitalRead(Button3) == HIGH)

 {

 myTone(BUZZER, note3, 250);

 }

 return;

}

// plays the tone we want by using the vibrations of the buzzer

void myTone(byte pin, uint16_t frequency, uint16_t duration)

{ // input parameters: Arduino pin number, frequency in Hz, duration in milliseconds

 unsigned long startTime=millis();

 unsigned long halfPeriod= 1000000L/frequency/2;

 while (millis()-startTime< duration)

 {

 digitalWrite(pin,HIGH);

 delayMicroseconds(halfPeriod);

 digitalWrite(pin,LOW);

 delayMicroseconds(halfPeriod);

 }

}

Result

Now we have a simple sound board where a single button will play one note in a triad, and we can even select

which triad is being played.

Now It’s Your Turn!

• Can you set up a single button press to play a small melody?

• Can you string together button presses and melodies to create a song?

• Can you combine this with the WiFi project to create an online interface for the sounds?

Lesson I – 8: Motion Detector

OVERVIEW

In this lesson we will:

• Learn about what a gesture sensor is and how they work

• Create a project using the gesture sensor on the Lenovo Educational Board

Teacher Guide

In this lesson, the students will be interacting with the motion sensor to detect movement. The main forms of

movement are up, down, left, and right. Please note that sometimes gestures may be misread. Also, we

recommend moving your hand about 6 inches away at a relatively normal speed for the best results. If this

does not work, try moving two fingers in various directions about 1 inch from the sensor.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

The first motion detector was invented by Samuel Bango to detect burglar or thieves. Nowadays, motion

sensors are used everywhere, such as security systems in your home, banks, shopping malls, etc. Retail or

grocery stores have motion detectors at each entrance, so whenever you come near the door, the door will

automatically open. A lot of modern cars are also equipped with motion sensors to detect nearby cars and

sense how close they are to your car. This feature in cars has prevented serious accidents from happening on

the road.

Motion detectors detect humans or moving objects motions and output data to a controller. There are

different types of motion detectors. Commonly, motion detectors use different types of sensors to detect

movements such as passive infrared sensors, ultrasonic sensors, and microwave sensors.

Passive infrared sensors detect a person's body heat when they come close to the sensor and produce digital

outputs. PIR sensors are small, low power, affordable and easy to use.

Ultrasonic sensors are used to measure a moving object's reflection. When an object enters the spectrum of

the ultrasonic sensor, the sound waves get reflected back creating echoes, and so this generates electric pulse.

Therefore, the ultrasonic sensors detect motion with these echo patterns. The EDU board is equipped with a

motion sensor, Adafruit_APDS9960, so when the sensor detects a movement, it will send signals to the micro-

controller. You can then program the board to simulate different actions based on the output of the sensor.

You can visit https://www.elprocus.com/motion-detector-circuit-with-working-description-and-its-

applications/ for more information about motion sensor.

Procedure

In this lesson, we will build a simple project utilizing the motion sensor to detect directions of gestures.

1. First, we will include the appropriate libraries:

Please note that you must install the Melopero_APDS9960 library from the library manager.

// include Melopero library

#include "Melopero_APDS9960.h"

#include <Wire.h>

#include <SparkFun_APDS9960.h>

https://www.elprocus.com/motion-detector-circuit-with-working-description-and-its-applications/
https://www.elprocus.com/motion-detector-circuit-with-working-description-and-its-applications/

2. Now, we will create the SparkFun and Melopero objects:

3. Input the following setup() function to initialize and reset the gesture sensor:

4. Continue to input the following in the setup() function to set the gesture sensor settings:

// create objects

SparkFun_APDS9960 apds = SparkFun_APDS9960();

Melopero_APDS9960 device;

void setup() {

 Serial.begin(9600); // set serial to 9600

 // set up the gesture sensor

 Wire.begin();

 device.initI2C(0x39, Wire);

 device.reset(); // Reset the device

 device.resetGestureEngineInterruptSettings();

 apds.init();

 Serial.println("Device initialized correctly!");

 // Gesture settings to set the distance for reading gestures

 device.enableGesturesEngine();

 device.setGestureProxEnterThreshold(25);

 device.setGestureExitThreshold(20);

 device.setGestureExitPersistence(EXIT_AFTER_4_GESTURE_END);

 // turn on gesture sensor

 device.wakeUp();

}

5. Input the following loop() function to read new gestures from the sensor and print them to the Serial.

Result

Once you have successfully compiled and uploaded the sketch on to the board, go ahead and open your Serial

Monitor to see the output. Wave your hand in front of the sensor in one direction, then again in a different

direction. Your Serial Monitor output should look something like the figure below. Please be sure to set the

baud rate to 9600.

void loop() {

 // update the status to see if there is a gesture

 device.updateGestureStatus();

 // if gesture read the gesture

 if (device.gestureFifoHasData){

 device.parseGesture(300);

 if (device.parsedUpDownGesture != NO_GESTURE ||

device.parsedLeftRightGesture != NO_GESTURE)

 Serial.print("Gesture : ");

 if (device.parsedUpDownGesture == UP_GESTURE)

 Serial.print("UP ");

 else if (device.parsedUpDownGesture == DOWN_GESTURE)

 Serial.print("DOWN ");

 if (device.parsedLeftRightGesture == LEFT_GESTURE)

 Serial.print("LEFT ");

 else if (device.parsedLeftRightGesture == RIGHT_GESTURE)

 Serial.print("RIGHT ");

 if (device.parsedUpDownGesture != NO_GESTURE ||

device.parsedLeftRightGesture != NO_GESTURE)

 Serial.println();

 }

}

Now It’s Your Turn!

• Can you create a sketch that prints out a random even number when you swipe up and a random odd

number when you swipe down?

Lesson I – 9: Guess the Number

OVERVIEW

In this lesson we will:

• Use a random number generator

• Write and read values to and from EEPROM

• Use the Serial to communicate guesses and results

Teacher Guide

For this lesson, students will be working with random numbers, the Serial Monitor, and EEPROM to create a

small guessing game. Since EEPROM has limited uses (about 100,000) we recommend running this program

only a handful of times to prevent hardware damage.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

What is random number? Well, in programming, these numbers are not actually random, instead they are

pseudo-random. What this means is that these are calculated using mathematical ways but are still considered

random numbers. Additionally, these numbers are oftentimes in a sequence of values where the seed is

where in the random sequence you want to start. For this lesson, we will use the random() function to get a

pseudo-random number from the computer. However, we could use the randomSeed() function to get the

same values read from the computer (i.e., your first value is a one then mine would also be one if we had the

same random seed).

Procedure

1. Include the EEPROM library:

2. Above the setup() function type the following variables:

3. Include the following EEPROMClass objects:

4. Input the following setup() function:

Here we begin the EEPROM objects and tell the computer where to store the values in the EEPROM.

#include "EEPROM.h"

uint32_t randComputer = 0; // random number selected by computer

uint32_t randGuess = 0; // your guess

int bootCount = 0; // keeps track of number of loops

// Create EEPROM classes

EEPROMClass RANDCOMP("eeprom0");

EEPROMClass GUESS("eeprom1");

void setup() {

 // set baud rate

 Serial.begin(115200);

 delay(1000);

 // begin EEPROM class

 RANDCOMP.begin(0x500);

 GUESS.begin(0x200);

 Serial.println("Please input a number 1, 2, or 3");

}

5. Input the following loop() function:

We read the input from the Serial and convert it to an integer that is constrained to the range 1 through 3.

Next, we set the computer number to random number between 1 and 3.

6. Continue inputting the loop() function:

This is where we write the variables to the EEPROM and then read them after a slight delay to make sure

that the number they chose is correct.

void loop() {

 // run while serial is available

 while(Serial.available() > 0)

 {

 randGuess = Serial.parseInt();

 // A newline character indicates end of input

 if(Serial.read() == '\n')

 {

 //Increment boot number

 ++bootCount;

 // Adjust the values if out of range

 randGuess = constrain(randGuess, 1, 3);

 // select random number in range 1-3

 randComputer = random(1, 4);

 //Write: Variables ---> EEPROM stores

 RANDCOMP.put(0, randComputer);

 GUESS.put(0, randGuess);

 Serial.println("Writing to EEPROM:");

 Serial.print("Your Guess: "); Serial.println(randGuess);

 Serial.println("------------------------------------\n");

 // Clear variables

 randComputer = 0;

 randGuess = 0;

 Serial.println("Clearing variables");

 Serial.print("Computer Number: "); Serial.println(randComputer);

 Serial.print("Your Guess: "); Serial.println(randGuess);

 Serial.println("------------------------------------\n");

 delay(3000); // wait 3 seconds before displaying computer number

 // Read: Variables <--- EEPROM stores

 RANDCOMP.get(0, randComputer);

 GUESS.get(0, randGuess);

 Serial.println("Reading from EEPROM:");

 Serial.print("Computer Number: "); Serial.println(randComputer);

 Serial.print("Your Guess: "); Serial.println(randGuess);

 Serial.println("------------------------------------\n");

 Serial.println();

7. Finish inputting the loop() function:

Here there are if statements on ending the loop if there have been 5 or more loops or you have guessed

the computer’s number correctly.

 if (randComputer == randGuess) // if guessed correctly

 {

 Serial.println("You have guess correctly!");

 delay(0xFFFFFFFF); // max delay value to prevent looping

 }

 else if (bootCount >= 5) // if you ran out of attempts

 {

 Serial.println("Sorry you have run out of attempts.");

 delay(0xFFFFFFFF); // max delay value to prevent looping

 }

 else // print selection statement before looping again

 {

 Serial.println("Please input a number 1, 2, or 3");

 }

 }

 }

}

Result

Now we have a fully functioning random number guessing game where you have 5 attempts to guess a

number that the computer is thinking of.

Now It’s Your Turn!

• Can you change the number range that people are able to guess?

• Can you use EEPROM to make another small game like a number guesser?

Lesson I – 10: Create Your Own Timer

OVERVIEW

In this lesson we will:

• Write a simple program to set buttons to turn on/off a stopwatch and output the total time in the

Serial Monitor

• Set a time from the Serial Monitor and make the buzzer go off when the time has elapsed

Teacher Guide

For this lesson, students will be working with the Serial Monitor to create a timer and stopwatch. Please note

when typing in the large integers used for division to type the correct number of zeroes or the calculations will

be thrown off, leading to negative seconds or minutes being displayed.

Tips on Troubleshooting:

If for some reason your board does not produce the expected output, you can troubleshoot by looking at the

following factors:

1. Board Connectivity

Is your board connected to your computer?

2. COM Port

Is the IDE configuration set to the right COM port?

3. PIN number

Did you define the PIN number correctly in your program?

Background Info

If you have taken any test or played any sports then you have used a timer to track your time. You probably

have either used a timer to count down a specific time interval, or a stopwatch to count upwards from zero for

measuring the elapsed time. Timers and stopwatches are used everywhere around us, and they are included

in most modern electronic devices such as phones, computers, or smart appliances.

We can create both a timer and a stopwatch from the Educational Arduino board by utilizing the buttons and

the buzzer. We will output the time through the Serial Monitor.

Procedure

1. First, define the following global variables and pins:

2. Input the following setup() function to set the pinModes and print the option of timer or stopwatch to

the Serial:

// define global variables and pins

#define BUZZER 15

#define Button1 1

#define Button2 2

int elapsedMillis = 0;

int currentMillis = 0;

int startMillis = 0;

int h = 0; int m = 0; int s = 0;

void setup() {

 // set baud rate

 Serial.begin(9600);

 // set the appropriate state for buzzer and buttons

 pinMode(BUZZER, OUTPUT);

 pinMode(Button1, INPUT);

 pinMode(Button2, INPUT);

 Serial.println();

 Serial.println();

 Serial.println("Please decide whether your want to use the timer or the stopwatch.");

 Serial.println("Type 't' for timer or 's' for stopwatch.");

}

3. Input the following loop() function:

In this section, we read if timer or stopwatch is chosen in the Serial. Then, if stopwatch is chosen the code

runs and prints the stopwatch times until the button at pin 1 is pressed to restart the stopwatch at zero.

Once the button at pin 2 is pressed, we restart whether the user wants to use the timer or stopwatch.

4. Continue inputting the loop() function:

void loop() {

 while(Serial.available() > 0)

 {

 char type = Serial.read(); // reads input from serial

 h = 0; m = 0; s = 0;

 // A newline character indicates end of input

 if(Serial.read() == '\n')

 {

 if (type == 's') // if input is s for stopwatch

 {

 Serial.println("You chose stopwatch.");

 startMillis = millis();

 while(digitalRead(Button2) == LOW) // loops while button 2 is not pushed

 {

 currentMillis = millis();

 elapsedMillis = (currentMillis - startMillis);

 // calculates h,m,s then print it

 h = (elapsedMillis / 3600000);

 m = ((elapsedMillis -(h*360000)) / 60000);

 s = ((elapsedMillis - ((m*60000)+(h*3600000))) / 1000);

 Serial.print(h);

 Serial.print(" hr ");

 Serial.print(m);

 Serial.print(" min ");

 Serial.print(s);

 Serial.print(" sec ");

 Serial.print(elapsedMillis - ((s*1000)+(m*60000)+(h*3600000)));

 Serial.println(" ms");

 if (digitalRead(Button1) == HIGH) // resets stopwatch from zero

 {

 startMillis = millis();

 }

 }

 Serial.println();

 Serial.println();

 Serial.println("Please decide whether your want to use the timer or the

stopwatch.");

 Serial.println("Type 't' for timer or 's' for stopwatch.");

 }

If timer is chosen, then we ask the user for additional input for how long to set the timer. Then, we set the

timer with chosen amount of time.

 else if (type == 't') // if input is t for timer

 {

 Serial.println("You chose timer.");

 Serial.println();

 Serial.println();

 Serial.println("Please enter the number of hours, minutes, and seconds

for the timer.");

 Serial.println("hours,minutes,seconds");

 Serial.println("ex: 0,5,5");

 Serial.println("This would start a timer for 5 minutes and 5 seconds");

 while(digitalRead(Button2) == LOW) // loops while button 2 is not pushed

 {

 while(Serial.available() > 0)

 {

 // reads input from serial into integers

 int hour = Serial.parseInt();

 int minute = Serial.parseInt();

 int second = Serial.parseInt();

 // A newline character indicates end of input

 if(Serial.read() == '\n')

 {

 // Adjust the values if out of range

 hour = constrain(hour, 0, 23);

 minute = constrain(minute, 0, 59);

 second = constrain(second, 0, 59);

 Serial.print("Setting the timer with");

 Serial.print(" hours=");

 Serial.print(hour, DEC);

 Serial.print(" minutes=");

 Serial.print(minute, DEC);

 Serial.print(" seconds=");

 Serial.println(second, DEC);

5. Input the final part of the loop() function:

This is where the timer prints out the remaining time and plays the sound when the timer is over. When

the buzzer sounds, the user is given the choice of timer or stopwatch again. Also, if the user chooses other

than timer ‘t’ or stopwatch ‘s’ we tell them to input their selection again.

 int totalTime = (hour*3600000) + (minute*60000) + (second*1000);

 int curTime = millis();

 int finalTime = totalTime + curTime;

 int remainingTime = 0;

 while(finalTime >= curTime) // counts backwards by subtracting the

curTime from totalTime

 {

 curTime = millis();

 remainingTime = finalTime - curTime;

 h = (remainingTime / 3600000);

 m = ((remainingTime -(h*3600000)) / 60000);

 s = ((remainingTime - ((m*60000)+(h*3600000))) / 1000);

 Serial.print(h);

 Serial.print(" hr ");

 Serial.print(m);

 Serial.print(" min ");

 Serial.print(s);

 Serial.println(" sec");

 }

 myTone(BUZZER, 500, 2000); // plays buzzer sound when timer is complete

 Serial.println();

 Serial.println();

 Serial.println("Please enter the number of hours, minutes, and seconds

for the timer.");

 Serial.println("hours,minutes,seconds");

 Serial.println("ex: 0,5,5");

 Serial.println("This would start a timer for 5 minutes and 5 seconds");

 }

 }

 }

 Serial.println();

 Serial.println();

 Serial.println("Please decide whether your want to use the timer or the

stopwatch.");

 Serial.println("Type 't' for timer or 's' for stopwatch.");

 }

 else // if input is not t or s

 {

 Serial.println("Not a valid input. Type either 't' or 's' to continue.");

 }

 }

 }

}

6. Add the myTone function below and outside of the loop function to play a sound from the buzzer:

Result

Open the Serial Monitor to choose whether you want to use the timer or stopwatch and input the according

values to see your program at work. Please be sure to set the baud rate to 9600!

Now It’s Your Turn!

• Can you make the stopwatch reset after a certain amount of time has elapsed?

• Can you make a watchdog timer where if you do not press a button within a certain amount of timer

the buzzer sounds and the Neopixel flashes red?

// plays the tone we want by using the vibrations of the buzzer

void myTone(byte pin, uint16_t frequency, uint16_t duration)

{ // input parameters: Arduino pin number, frequency in Hz, duration in milliseconds

 unsigned long startTime=millis();

 unsigned long halfPeriod= 1000000L/frequency/2;

 while (millis()-startTime< duration)

 {

 digitalWrite(pin,HIGH);

 delayMicroseconds(halfPeriod);

 digitalWrite(pin,LOW);

 delayMicroseconds(halfPeriod);

 }

}

